Reciprocal of a Fraction
To get the reciprocal of a fraction, just turn it upside down.
Like this (press play button): |
Fractions
A Fraction (such as ^{3}/_{4}) has two numbers:Numerator |
Denominator |
We call the top number the Numerator, it is the number of parts you have.
We call the bottom number the Denominator, it is the number of parts the whole is divided into.
Reciprocal of a FractionTo get the reciprocal of a fraction, just turn it upside down. Examples: |
Fraction | Reciprocal |
---|---|
^{3}/_{8} | ^{8}/_{3} |
^{5}/_{6} | ^{6}/_{5} |
^{1}/_{3} | ^{3}/_{1} = 3 |
^{19}/_{7} | ^{7}/_{19} |
Reciprocal of a Mixed Fraction
To find the reciprocal of a Mixed Fraction, you must first convert it to an Improper Fraction, then turn it upside down.
Example: What is the reciprocal of 2 ^{1}/_{3} ?
1. Convert it to an improper fraction: 2 ^{1}/_{3} = ^{7}/_{3}
2. Turn it upside down: ^{3}/_{7}
The Answer is: ^{3}/_{7}
Multiplying a Fraction by its Reciprocal
If you multiply a fraction by its reciprocal you get 1:
Examples:
^{5}/_{6} × ^{6}/_{5} = 1
^{1}/_{3} × 3 = 1
That is all. It is just too easy to talk any more about it.